Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 250: 116094, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38308943

RESUMO

Upconversion nanoparticles (UCNPs)-mediated in-situ imaging and synergistic therapy may be an effective approach against tumors. However, it remains a challenge to improve therapeutic index and reduce toxicity. Here, we investigated the construction process of a three-layer (core-shell-shell) upconversion nano-jelly hydrogels (UCNJs) coated with stimulus-responsive deoxyribonucleic acid chains, aiming to achieve selective recognition of tumor cells and controlled release of drugs. The UCNJs have a NaYF4: Yb, Er core with an outer silica shell with embedded methylene blue (MB). Then the outer layer was coated with mesoporous silica and loaded with doxorubicin (DOX). Finally, polyacrylamide chains containing anti-adenosine triphosphate (ATP) aptamer sequences were assembled layer-by-layer on the surface of particles to form DNA hydrogels to lock DOX. Under near-infrared irradiation, green light (540 nm) emitted by UCNJs can be used for imaging, while red light (660 nm) is absorbed by MB. The latter generates singlet oxygen, resulting in photodynamic therapy (PDT) effect to inhibit tumor growth. UCNJs also can recognize ATP in tumor cells, leading to hydrogel degradation and DOX release. The hydrogel coating can increase drug-carrying capacity of mesoporous materials and improve biocompatibility. Therefore, the UCNJs has great potential advantages for application in the field of cancer diagnosis and treatment.


Assuntos
Técnicas Biossensoriais , Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Fotoquimioterapia/métodos , Dióxido de Silício , Hidrogéis
2.
Anal Chem ; 96(10): 4031-4038, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38411081

RESUMO

A multisignal method for the sensitive detection of norovirus based on Mn paramagnetic relaxation and nanocatalysis was developed. This dual-modality sensing platform was based on the strong relaxation generated by cracked Au@MnO2 nanoparticles (NPs) and their intrinsic enzyme-like activity. Ascorbic acid rapidly cracked the MnO2 layer of Au@MnO2 NPs to release Mn(II), resulting in the relaxation modality being in a "switch-on" state. Under the optimal conditions, the relaxation modality exhibited a wide working range (6.02 × 103-3.01 × 107 copies/µL) and a limit of detection (LOD) of 2.29 × 103 copies/µL. Using 4,4',4″,4″'-(porphine-5,10,15,20-tetrayl) tetrakis (benzenesulfonic acid) (tpps)-ß-cyclodextrin (tpps-ß-CD) as a T1 relaxation signal amplification reagent, a lower LOD was obtained. The colorimetric modality exploited the "peroxidase/oxidase-like" activity of Au@MnO2 NPs, which catalyzed the oxidation of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue oxidized TMB, which exhibited a working range (6.02 × 104-6.02 × 106 copies/µL) and an LOD of 2.6 × 104 copies/µL. In addition, the rapid amplification reaction of recombinase polymerase enabled the detection of low norovirus levels in food samples and obtained a working range of 101-106 copies/mL and LOD of 101 copies/mL (relaxation modality). The accuracy of the sensor in the analysis of spiked samples was consistent with that of the real-time quantitative reverse transcription polymerase chain reaction, demonstrating the high accuracy and practical utility of the sensor.


Assuntos
Técnicas Biossensoriais , Norovirus , Óxidos , Compostos de Manganês , Oxirredutases , Técnicas Biossensoriais/métodos , Colorimetria/métodos , Limite de Detecção
3.
Anal Chim Acta ; 1292: 342245, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38309853

RESUMO

BACKGROUND: DNA tweezers, classified as DNA nanomachines, have gained prominence as multifunctional biosensors due to their advantages, including a straightforward structure, response mechanism, and high programmability. While the DNA tweezers demonstrate simultaneous, rapid, and stable responses to different targets, their detection sensitivity requires enhancement. Some small molecules, such as mycotoxins, often require more sensitive detection due to their extremely high toxicity. Therefore, more effective signal amplification strategies are needed to further enhance the sensitivity of DNA tweezers in biosensing. RESULTS: We designed programmable DNA tweezers that detect small-molecule mycotoxins and miRNAs through simple sequence substitution. While the DNA tweezers demonstrate simultaneous, rapid, and stable responses to different targets, their detection sensitivity requires enhancement. We introduced the Strand Displacement Amplification (SDA) technique to address this limitation, proposing a strategy of novel programmable DNA tweezers-SDA ultrasensitive signal amplification fluorescence sensing. We specifically investigate the effectiveness of this approach concerning signal amplification for two critical mycotoxins: aflatoxin B1 (AFB1) and zearalenone (ZEN). Results indicate that the detection ranges of AFB1 and ZEN via this strategy were 1-10,000 pg mL -1 and 10-100,000 pg mL -1, respectively, with corresponding detection limits of 0.933 pg mL -1 and 1.07 pg mL -1. Compared with the DNA tweezers direct detection method for mycotoxins, the newly constructed programmable DNA tweezers-SDA fluorescence sensing strategy achieved a remarkable 104-fold increase in the detection sensitivity for AFB1 and ZEN. SIGNIFICANCE: The constructed programmable DNA tweezers-SDA ultrasensitive signal-amplified fluorescence sensing strategy exhibits excellent detection performance for mycotoxins. The superb versatility of this strategy allows the developed method to be easily used for detecting other analytes by simply replacing the aptamer and cDNA, which has incredible potential in various fields such as food safety screening, clinical diagnostics, and environmental analysis.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Micotoxinas , Zearalenona , Micotoxinas/análise , Zearalenona/análise , DNA , DNA Complementar , Limite de Detecção , Aflatoxina B1/análise
4.
Food Chem ; 439: 138102, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38100873

RESUMO

Ochratoxin A (OTA) is a potent carcinogen, and is among the most dangerous mycotoxins in agricultural products. In this study, an ultrasensitive dual-mode immunosensor was developed for naked-eye and fluorescence detection of OTA based on Ag-doped core-shell nanohybrids (Ag@CSNH). Complete antigen-labeled Ag@CSNH (CA-Ag@CSNH) were used as a competitive bind and dual-mode probe. The diffused doping structure of CA-Ag@CSNH provided improved stability, color and fluorescence quencher performance. Antibodies modified magnetic beads were used as a capture probe. The competitive binding between OTA and CA-Ag@CSNH produced both color change and fluorescence quenching. Ultraviolet and fluorescence intensitie correlated linearly with OTA concentration ranges of 0.03-3 ng/mL and 10-10000 pg/mL, and limits of detection of 0.0235 ng/mL and 0.9921 pg/mL, respectively. The practical applicability of proposed strategy was demonstrated by analysis of OTA in spiked corn, soybean and flour samples. This study offers a new insight on multi-mode platforms for various applications.


Assuntos
Técnicas Biossensoriais , Micotoxinas , Ocratoxinas , Imunoensaio , Ocratoxinas/análise , Micotoxinas/análise , Limite de Detecção
5.
Sci Total Environ ; 914: 169738, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38160831

RESUMO

An NiPt nanozyme-mediated relaxation and colorimetric sensor is developed for dual-modality detection of norovirus (NoV). The relaxation modality is based on the "catalase-like" activity of the NiPt nanozyme, which adjusts the hydrogen peroxide (H2O2) mediated Fe (II)/Fe(III) conversion, thereby changing the relaxation signal. Poly-γ-glutamic acid (MW ≈ 1w) can enhance the relaxivity of Fe(III) (r1 = 7.11 mM-1 s-1; r2 = 8.94 mM-1 s-1). The colorimetric modality exploits the "peroxidase-like" activity of the NiPt nanozyme, which can catalyze the oxidation of colorless 3, 3', 5, 5'-tetramethylbenzidine (TMB) to blue oxTMB in H2O2. Under optimal conditions, the relaxation modality exhibits a wide working range (1.0 × 101-1.0 × 104 fM) and a limit of detection (LOD) of 4.7 fM (equivalent to 2820 copies/µL). The spiked recoveries range from 99.593 to 106.442 %, and the relative standard deviation (RSD) is less than 5.124 %. The colorimetric modality exhibited the same working range with a lower LOD of 2.9 fM (equivalent to 1740 copies/µL) and an RSD of less than 2.611 %. Additionally, the recombinase polymerase amplification reaction enabled the detection of low NoV levels in food samples with a working range of 102-106 copies/mL and LOD of 102 copies/mL. The accuracy of the sensor in the analysis of spiked samples is consistent with the gold standard method (real-time quantitative reverse transcription-polymerase chain reaction), demonstrating the high accuracy and practical utility of the sensor.


Assuntos
Colorimetria , Norovirus , Colorimetria/métodos , Peróxido de Hidrogênio , Compostos Férricos , Limite de Detecção , Peroxidase
6.
J Nanobiotechnology ; 21(1): 389, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37880670

RESUMO

It has recently been discovered that, like other members of the Cas family (12a and 13a), the clustered regularly interspaced short palindrome repeat CRISPR-Cas14a system not only mediates high-sensitivity detection with exceptionally strong gene editing ability but is also generally useful for DNA detection via fluorescence. Photoelectrochemical (PEC) sensors have been widely applied as efficient analytical tools. Measuring electrical signals is more cost-effective and the necessary equipment is more easily portable than fluorescence signal detectors, but their stability still needs to be improved. The high base resolution of CRISPR-Cas14a can compensate for such shortcomings. Therefore, electrical signals and fluorescence signals were combined, and the development of a universal CRISPR-Cas14a-responsive ultrasensitive upconversion PEC sensor is described in this paper. Moreover, strand displacement amplification (SDA) and a near-infrared (NIR) light source were utilized to further improve the stability and sensitivity of the photoelectric signals. At the same time, the modified working electrode (UCNPs-ssDNA-CdS@Au/ITO) on the three-electrode disposable sensor was used as the reporter probe, which cooperates with the trans-cleavage activity of Cas14a endonuclease. To verify the universality of this sensor, the UCNPs-Cas14a-based PEC sensor was applied for the detection of the small-molecule toxin T2 and protein kinase PTK7. Here, we report that the limit of detection of this reagent was within the fg range, successfully applied to the detection of T2 in oats and PTK7 in human serum. We propose that by combining PEC and CRISPR-14a, UCNPs-Cas14a-based PEC sensors could become powerful drivers for the extensive development of ultrasensitive, accurate and cost-effective universal sensors for detection and diagnosis.


Assuntos
Técnicas Biossensoriais , Humanos , Edição de Genes , DNA/química , DNA de Cadeia Simples , Moléculas de Adesão Celular , Receptores Proteína Tirosina Quinases
7.
Anal Methods ; 15(28): 3393-3403, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37403740

RESUMO

In this study, we introduced a Raman detection technique based on a combination of functionalized magnetic beads and surface-enhanced Raman scattering (SERS) tags to develop a rapid and sensitive strategy for the detection of Staphylococcus aureus (S. aureus), a typical foodborne pathogen. Polyethylene glycol (PEG) and bovine serum albumin (BSA) dual-mediated teicoplanin functionalized magnetic beads (TEI-BPBs) were prepared for separation of target bacteria. SERS tags were used to immobilize antibodies on gold surfaces with bifunctional linker proteins to ensure specific recognition of S. aureus. Under optimal conditions, the combination of TEI-BPBs and SERS tags showed reliable performance, exhibiting good capture efficiency even in the presence of 106 CFU mL-1 of non-target bacteria. The SERS tag provided an effective hot spot for subsequent Raman detection, presenting good linearity in the range of 102-107 CFU mL-1. Good performance has also been shown in detecting target bacteria in milk samples, where it has a recovery of 95.5-101.3%. Thus, the highly sensitive Raman detection technique combined with TEI-BPBs capture probes and SERS tags is a promising method for the detection of foodborne pathogens in food or clinical samples.


Assuntos
Nanopartículas Metálicas , Staphylococcus aureus , Magnetismo , Bactérias , Fenômenos Magnéticos
8.
J Hazard Mater ; 458: 131874, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37379602

RESUMO

Diethylstilbestrol (DES) is a threatening factor to the human endocrine system. Here, we reported a DNA origami-assembled plasmonic dimer nanoantenna-based surface-enhanced Raman scattering (SERS) biosensor for measuring trace DES in foods. A critical factor influencing the SERS effect is interparticle gap modulation of SERS hotspots with nanometer-scale accuracy. DNA origami technology aims to generate naturally perfect structures with nano-scale precision. Exploiting the specificity of base-pairing and spatial addressability of DNA origami to form plasmonic dimer nanoantenna, the designed SERS biosensor generated electromagnetic-enhancement and uniform-enhancement hotspots to improve sensitivity and uniformity. Owing to their high target-binding affinity, aptamer-functionalized DNA origami biosensors transduced the target recognition into dynamic structural transformations of plasmonic nanoantennas, which were further converted to amplified Raman outputs. A broad linear range from 10-10 to 10-5 M was obtained with the detection limit of 0.217 nM. Our findings demonstrate the utility of aptamer-integrated DNA origami-based biosensors as a promising approach for trace analysis of environmental hazards.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Humanos , Dietilestilbestrol , Ouro/química , Nanopartículas Metálicas/química , DNA/química , Oligonucleotídeos , Análise Espectral Raman , Polímeros/química
9.
Anal Chim Acta ; 1267: 341351, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37257972

RESUMO

Food safety is one of the greatest public health challenges. Developing ultrasensitive detection methods for analytes at ultra-trace levels is, therefore, essential. In recent years, the bio-barcode assay (BCA) has emerged as an effective ultrasensitive detection strategy that is based on the indirect amplification of various DNA probes. This review systematically summarizes the progress of fluorescence, PCR, and colorimetry-based BCA methods for the detection of various contaminants, including pathogenic bacteria, toxins, pesticides, antibiotics, and other chemical substances in food in over 120 research papers. Current challenges, including long experimental times and strict storage conditions, and the prospects for the application of BCA in biomedicine and environmental analyses, have also been discussed herein.


Assuntos
Nanopartículas Metálicas , Nanopartículas Metálicas/química , Ouro/química , Inocuidade dos Alimentos , Sondas de DNA/química , Tecnologia
10.
J Hazard Mater ; 449: 131044, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-36821893

RESUMO

Nano-biosensors are of great significance for the analysis and detection of important biological targets. Surprisingly, the CRISPR-Cas12a system not only provides us with excellent gene editing capabilities, it also plays an important role in biosensing due to its high base resolution and high levels of sensitivity. However, most CRISPR-Cas12a-based sensors are limited by their recognition and output modes, are therefore only utilized for the detection of nucleic acids using fluorescence as an output signal. In the present study, we further explored the potential application of CRISPR-Cas12a and developed a CRISPR-Cas12a-based fluorescence/colorimetric biosensor (UCNPs-Cas12a/hydrogel-MOF-Cas12a) that provides an efficient targeting system for small molecules and protein targets. These two sensors yield multiple types of signal outputs by converting the target molecule into a deoxyribonucleic acid (DNA) signal input system using aptamers, amplifying the DNA signal by catalyzed hairpin assembly (CHA), and then combining CRISPR-Cas12a with various nanomaterials. UCNPs-Cas12a/hydrogel-MOF-Cas12a exhibited prominent sensitivity and stability for the detection of estradiol (E2) and prostate-specific antigen (PSA), and was successfully applied for the detection of these targets in milk and serum samples. A major advantage of the hydrogel-MOF-Cas12a system is that the signal output can be observed directly. When combined with aptamers and nanomaterials, CRISPR-Cas12a can be used to target multiple targets, with a diverse array of signal outputs. Our findings create a foundation for the development of CRISPR-Cas12a-based technologies for application in the fields of food safety, environmental monitoring, and clinical diagnosis.


Assuntos
Técnicas Biossensoriais , Ácidos Nucleicos , Humanos , Masculino , Colorimetria , Sistemas CRISPR-Cas , DNA , Monitoramento Ambiental , Hidrogéis , Oligonucleotídeos , Feminino
11.
Environ Sci Pollut Res Int ; 30(15): 43215-43228, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36652077

RESUMO

Antibiotics pollution is an urgent public health issue. Biochar is a kind of promising composite for removal antibiotic in aqueous environment. In this study, a novel magnetic graphoxide/biochar composite (mGO/TBC) was synthesized by simple impregnation method and used as an efficient and recyclable persulfate (PS) activator for degradation and removal of sulfonamides (SAs) and quinolones (QNs) antibiotics. Based on the synergism pre-adsorption and degradation between graphoxide and biochar, the removal rates of mGO/TBC on sarafloxacin hydrochloride, sulfadimethoxine, sulfapyridine, sulfadoxine, sulfamonomethoxine, sulfachloropyridazine, enrofloxacin, and ciprofloxacin were increased above 95%. Moreover, the mGO/TBC could be reused at least seven times after degradation-recovery cycles. Quenching experiment and ESR analysis proved that 1O2, •OH, and SO4•- from mGO/TBC/PS system were the primary oxidation active species to degrade SAs and QNs. It is a promising substrate for antibiotic bioremediation with good application prospects.


Assuntos
Sulfonamidas , Poluentes Químicos da Água , Água , Óxido de Magnésio , Antibacterianos , Sulfanilamida , Carvão Vegetal , Fenômenos Magnéticos , Chá , Poluentes Químicos da Água/análise
12.
ACS Appl Mater Interfaces ; 15(5): 6338-6353, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36701257

RESUMO

Bacteria-infected skin wounds caused by external injuries remain a serious challenge to the whole society. Wound healing dressings, with excellent antibacterial activities and potent regeneration capability, are increasingly needed clinically. Here, we reported a novel functional microneedle (MN) array comprising methacrylated hyaluronic acid (MeHA) embedded with pH-responsive functionalized zeolitic imidazolate framework-8 (ZIF-8) nanoparticles to treat bacteria-infected cutaneous wounds. Antibacterial activity was introduced into Zn-ZIF-8 to achieve sterilization through releasing Zn ions, as well as increased angiogenesis by dimethyloxalylglycine (DMOG) molecules that were distributed within its framework. Furthermore, biodegradable MeHA was chosen as a substrate material carrier to fabricate DMOG@ZIF-8 MN arrays. By such design, DMOG@ZIF-8 MN arrays would not only exhibit excellent antibacterial activity against pathogenic bacteria but also enhance angiogenesis within wound bed by upregulating the expression of HIF-1α, leading to a significant therapeutic efficiency on bacteria-infected cutaneous wound healing. Based on these results, we conclude that this new treatment strategy can provide a promising alternative for accelerating infected wound healing via effective antibacterial activity and ameliorative angiogenesis.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Zeolitas , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Bactérias , Nanopartículas/química , Zeolitas/química , Cicatrização
13.
Sci Total Environ ; 858(Pt 2): 159977, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36347282

RESUMO

A fluorescent biosensor strategy was developed in combination with immunomagnetic separation for rapid and sensitive detection of staphylococcal enterotoxin B (SEB). Magnetic nanoparticles (MNPs) modified with aptamer of SEB could capture the SEB. Then the gold nanoparticles (AuNPs) fluorescent probe was added and a "sandwich structure" was formed between AuNPs, SEB and MNPs. The MNPs-SEB-AuNPs structure could be separated with an additional magnetic field, which resulted the lower signals of AuNPs fluorescent probe. In optimal conditions, the current method displayed a broad quantitative range from 100 to 107 fg/mL and the limit of detection was 3.43 fg/mL. The recovery of SEB-spiked milk samples ranged from 92.00 to 119.00 %, which revealed that the developed method had great accuracy. Furthermore, the method was fast and economical for ultrasensitive detection. Therefore, the fluorescent biosensor based on MNPs-AuNPs is promising for the detection of other environmental and food pollutants.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Ouro/química , Corantes Fluorescentes , Nanopartículas Metálicas/química , Técnicas Biossensoriais/métodos , Limite de Detecção
14.
ACS Omega ; 7(43): 39028-39038, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36340108

RESUMO

Currently, most matrices developed for matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS) for small-molecule detection are only suitable for the positive or negative ion mode and not the dual-ion mode, except for carbon-based nanomaterials. The lone-pair electrons on the N atom in poly n-vinylcarbazole (PVK) can serve as a Lewis base with strong electron-donation effects, which is favorable for negative ion mode detection. The surface of single-layer graphene oxide (SLGO) contains many oxygen atoms in carboxyl and hydroxyl groups that act as Lewis acids and thereby provides favorable protonation sites for positive ion mode detection. In this study, composite PVK/SLGO was prepared by combining the advantages of amorphous PVK and SLGO. PVK/SLGO was tested as a novel matrix for positive- and negative-ion-mode MALDI-TOF MS for the analysis of amino acids, nucleic acid bases, environmental endocrine disruptors, antibiotics, and various small molecules. PVK/SLGO was compared with PVK, SLGO, and commercially available matrices of 9-aminoacridine (9-AA) and α-cyano-4-hydroxycinnamic acid (CHCA). The PVK/SLGO matrix was demonstrated to be suitable for the positive and negative ion modes, exhibiting high signal intensity and detection sensitivity without background interference. The limits of detection of the aforementioned molecules ranged from 0.1 to 0.0001 and 0.01 to 0.0001 mg/mL in the positive and negative ion modes, respectively. The quantitative determination of enrofloxacin in milk was realized using an internal standard method with a linear range of 0.0001-0.1 mg/mL (R 2 = 0.9991). Furthermore, the PVK/SLGO matrix exhibited high salt tolerance (up to 1000 mmol/L) and stability over 28 consecutive days. Studies regarding its ionization mechanism revealed that the good performance originates from the combined materials acting synergistically. This study provides a foundation for developing bimodal composite matrices and further expands the scope of PVK/SLGO applications.

15.
Biosens Bioelectron ; 218: 114792, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36242902

RESUMO

Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas systems exhibit significant potential in developing biosensing technology due to their collateral cleavage capabilities. Herein, we introduced the collateral cleavage activity of CRISPR/Cas14a to activate DNA hydrogel for ultrasensitive detection of the myocardial infarction biomarker creatine kinase MB (CK-MB). In this strategy, the designed CRISPR/Cas14a system can be activated by introducing complementary DNA (cDNA) derived from competitive dissociation and exponential amplification (EXPAR), which is positively correlated with creatine kinase isoenzyme (CK-MB) concentration. Then the activated Cas14a protein can be utilized to indiscriminately cleave the DNA hydrogel cross-linker strand, leading to the degradation of the gel matrix and thus releasing the pre-encapsulated PtNPs/Cu-TCPP(Fe). PtNPs/Cu-TCPP(Fe) can trigger the TMB reaction, leading to an increase in absorbance value at 450 nm, thus enabling the quantitative detection of CK-MB. The proposed strategy combines CRISPR/Cas14a with DNA hydrogel for the first time, improving the programmability of DNA hydrogel and providing a reliable, sensitive, and versatile detection platform for trace non-nucleic acid targets.


Assuntos
Técnicas Biossensoriais , Hidrogéis , DNA Complementar , Isoenzimas/genética , DNA , Creatina Quinase Forma MB , Biomarcadores , Sistemas CRISPR-Cas/genética
16.
Anal Chim Acta ; 1222: 340178, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35934425

RESUMO

Kanamycin (KAN) residues in animal-derived food can cause serious threats to human health. Herein, a colorimetric aptasensor was described using "three-in-one" nanohybrids (hemin@Fe-MIL-88NH2/PtNP) as synergistic nanozymes assisted with the exonuclease I (Exo I) signal amplification for the ultrasensitive detection of KAN. In the presence of KAN and Exo I, the KAN aptamer (APT) was specifically bound to KAN, and the remaining APT complementary strand (cDNA1) captured hemin@Fe-MIL-88NH2/PtNP labeled with the cDNA1 complementary strand (cDNA2). Due to the synergistic effect of hemin, Fe-MIL-88NH2 and platinum nanoparticles (PtNPs), hemin@Fe-MIL-88NH2/PtNP exhibited superior catalytic performance and could efficiently catalyze the 3,3',5,5'-tetramethylbenzidine (TMB)-H2O2 system for signal development. Moreover, Exo I could digest APT and release KAN into a new cycle for signal amplification. Based on multiple signal amplification effects, our proposed aptasensor achieved a wide detection range from 0.01 to 100 ng mL-1 with a low detection limit of 2 pg mL-1. This assay also successfully detected KAN-added milk and shrimp samples with added recovery ranges of 93.58%-106.08% and relative standard deviations (RSDs) of 2.20%-5.50%. The aptasensor enabled ultrasensitive, specific, and fast detection of KAN, and exhibited promising applications in the efficient detection of food pollutants.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , Animais , Aptâmeros de Nucleotídeos/química , Colorimetria , DNA Complementar , Exodesoxirribonucleases , Hemina , Humanos , Peróxido de Hidrogênio/química , Canamicina , Limite de Detecção , Nanopartículas Metálicas/química , Platina/química
17.
RSC Adv ; 12(24): 15215-15221, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35693227

RESUMO

Traditional matrices for matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS) are usually crystalline small molecules. The heterogeneous co-crystallization of the analyte and the matrix creates a sweet spot effect and reduces point-to-point reproducibility. In this study, an amorphous poly-N-vinylcarbazole polymer (PVK) was studied as a novel matrix for MALDI-TOF MS to detect various low molecular weight compounds (LMWCs) in the negative ion mode. The PVK achieved excellent matrix action and showed high sensitivity, good salt tolerance, and reproducibility. These results significantly broaden the design rules for new and efficient polymeric MALDI matrices.

18.
Anal Chim Acta ; 1207: 339811, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35491042

RESUMO

Fumonisin (FB) is a common mycotoxin in corn, wheat, oats, and their related products. FB1 is the most predominant among fumonisins and is responsible for severe food contamination that may have deleterious effects on public health. Therefore, the demand for achieving sensitive detection of FB1 is becoming more and more pressing. In the present study, a creative biosensor for FB1 detection was developed based on fluorescence resonance energy transfer between upconversion nanoparticles (UCNPs) and graphene oxide (GO) with catalytic hairpin assembly (CHA) target recycling and amplification. In the presence of FB1, UCNPs were bound to the CHA amplification products away from the GO surface. Simultaneously, a strong fluorescence signal was produced at 980 nm (near-infrared light). The correlation between the concentration of FB1 and the fluorescence intensity exhibited a high relevance (R2 = 0.9971) ranging from 0.032 to 500 ng mL-1, and the method reached a considerably low limit of detection (0.0121 ng mL-1). It could be applied for the detection of FB1 in corn, oats, and infant supplements. The sensitive detection of FB1 proves the application potential of this method on food safety detection. This biosensor can enable high-throughput fungal toxin detection by allowing the use of various aptamers.


Assuntos
Técnicas Biossensoriais , Fumonisinas , Micotoxinas , Nanopartículas , Grafite , Humanos , Micotoxinas/análise , Zea mays
19.
Environ Sci Pollut Res Int ; 29(46): 69439-69449, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35567682

RESUMO

We designed and synthesised a magnetic adsorbent (Fe3O4@Si-OH@CS-Glu) combining chitosan-silanol groups with glutaraldehyde as a cross-linking agent, which has improved physicochemical properties and can be used to remove multiple heavy metals and bacteria from polluted water. The adsorbent was characterised with SEM, XRD, FTIR, BET, VSM, and zeta potential. Under optimum conditions, the adsorption efficiencies of Fe3O4@Si-OH@CS-Glu for Cr6+, As5+, Hg2+, and Se6+ were as high as 90.5%, 73.5%, 91.6%, and 100% respectively. In addition, Escherichia coli (gram-negative) and Staphylococcus aureus (gram-positive) can be removed after 2-4 adsorption cycles with 2.5 mg Fe3O4@Si-OH@CS-Glu. The main adsorption mechanism of the adsorbent for heavy metals and bacteria is electrostatic adsorption. Overall, the synthesised Fe3O4@Si-OH@CS-Glu adsorbent showed high removal efficiency and adsorption capacity with a stable structure and easy separation. It has promising applications for the removal of heavy metals and bacteria from water.


Assuntos
Quitosana , Mercúrio , Metais Pesados , Poluentes Químicos da Água , Adsorção , Bactérias , Quitosana/química , Glutaral , Cinética , Silanos , Água/química , Poluentes Químicos da Água/química
20.
Molecules ; 27(7)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35408487

RESUMO

The efficient capture of multi-pollutant residues in food is vital for food safety monitoring. In this study, in-situ-fabricated magnetic MIL-53(Al) metal organic frameworks (MOFs), with good magnetic responsiveness, were synthesized and applied for the magnetic solid-phase extraction (MSPE) of chloramphenicol, bisphenol A, estradiol, and diethylstilbestrol. Terephthalic acid (H2BDC) organic ligands were pre-coupled on the surface of amino-Fe3O4 composites (H2BDC@Fe3O4). Fe3O4@MIL-53(Al) MOF was fabricated by in-situ hydrothermal polymerization of H2BDC, Al (NO3)3, and H2BDC@Fe3O4. This approach highly increased the stability of the material. The magnetic Fe3O4@MIL-53(Al) MOF-based MSPE was combined with high-performance liquid chromatography-photo diode array detection, to establish a novel sensitive method for analyzing multi-pollutant residues in milk. This method showed good linear correlations, in the range of 0.05-5.00 µg/mL, with good reproducibility. The limit of detection was 0.004-0.108 µg/mL. The presented method was verified using a milk sample, spiked with four pollutants, which enabled high-throughput detection and the accuracies of 88.17-107.58% confirmed its applicability, in real sample analysis.


Assuntos
Poluentes Ambientais , Estruturas Metalorgânicas , Animais , Cromatografia Líquida de Alta Pressão/métodos , Poluentes Ambientais/análise , Limite de Detecção , Fenômenos Magnéticos , Estruturas Metalorgânicas/química , Leite/química , Reprodutibilidade dos Testes , Extração em Fase Sólida/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...